Regina 7.4 Calculation Engine
regina::ExampleLink Class Reference

This class offers routines for constructing ready-made examples of knots and links. More...

#include <link/examplelink.h>

Static Public Member Functions

static Link unknot ()
 Returns a zero-crossing diagram of the unknot.
 
static Link monster ()
 Returns the monster unknot, a 10-crossing diagram of the unknot that is difficult to untangle.
 
static Link gordian ()
 Returns Haken's Gordian unknot, a 141-crossing diagram of the unknot that is difficult to untangle.
 
static Link trefoilLeft ()
 Returns a three-crossing diagram of the left-hand trefoil.
 
static Link trefoilRight ()
 Returns a three-crossing diagram of the right-hand trefoil.
 
static Link trefoil ()
 Returns a three-crossing diagram of the right-hand trefoil.
 
static Link figureEight ()
 Returns a four-crossing diagram of the figure eight knot.
 
static Link hopf ()
 Returns a two-crossing diagram of the Hopf link.
 
static Link whitehead ()
 Returns a five-crossing diagram of the Whitehead link.
 
static Link borromean ()
 Returns a six-crossing diagram of the Borromean rings.
 
static Link conway ()
 Returns the 11-crossing Conway knot.
 
static Link kinoshitaTerasaka ()
 Returns the 11-crossing Kinoshita-Terasaka knot.
 
static Link torus (int p, int q)
 Returns the (p,q) torus link.
 
static Link gst ()
 Returns a 48-crossing potential counterexample to the slice-ribbon conjecture, as described by Gompf, Scharlemann and Thompson.
 
static Link chen ()
 Returns a 20-crossing, 5-component counterexample to the 3-move conjecture, as proposed by Chen and proven to be a counterexample by Dabkowski and Przytycki.
 
static Link virtualTrefoil ()
 Returns a two-crossing diagram of the virtual trefoil.
 
static Link kishino ()
 Returns a four-crossing diagram of the Kishino knot.
 
static Link gpv ()
 Returns a four-crossing diagram of the Goussarov-Polyak-Viro virtual knot.
 
static SpatialLink spatialTrefoil ()
 Returns a simple and symmetric embedding in 3-space of the right-hand trefoil.
 
static SpatialLink spatialHopf ()
 Returns a simple embedding in 3-space of the Hopf link.
 
static SpatialLink spatialBorromean ()
 Returns a simple and symmetric embedding in 3-space of the Borromean rings.
 
static SpatialLink cubicalUnknot ()
 Returns a 3-dimensional embedding of the unknot that follows the edges of a cube.
 

Detailed Description

This class offers routines for constructing ready-made examples of knots and links.

These examples may be useful for testing new code, or for simply getting a feel for how Regina works.

The sample links offered here may prove especially useful in Regina's scripting interface, where working with pre-existing files is more complicated than in the GUI.

Member Function Documentation

◆ borromean()

static Link regina::ExampleLink::borromean ( )
static

Returns a six-crossing diagram of the Borromean rings.

Returns
the Borromean rings.

◆ chen()

static Link regina::ExampleLink::chen ( )
static

Returns a 20-crossing, 5-component counterexample to the 3-move conjecture, as proposed by Chen and proven to be a counterexample by Dabkowski and Przytycki.

This link was proposed as a potential counterexample to the 3-move conjecture in "The 3-move conjecture for 5-braids", Qi Chen, Knots in Hellas '98, Proceedings of the International Conference on Knot Theory and its Ramifications, Series on Knots and Everything, Vol. 24, World Scientific, 2000, pp. 36-47.

It was proven to be a counterexample in "Burnside obstructions to the Montesinos-Nakanishi 3-move conjecture", M. K. Dabkowski and J. H. Przytycki, Geometry and Topology 6 (2002), 335-360.

Returns
Chen's proposed (and since proven) 20-crossing counterexample to the 3-move conjecture.

◆ conway()

static Link regina::ExampleLink::conway ( )
static

Returns the 11-crossing Conway knot.

This is the reflection of K11n34 in the Knot Atlas, and is a mutant of the Kinoshita-Terasaka knot.

Returns
the Conway knot.

◆ cubicalUnknot()

static SpatialLink regina::ExampleLink::cubicalUnknot ( )
static

Returns a 3-dimensional embedding of the unknot that follows the edges of a cube.

This is not a planar embedding: instead it follows a cycle through 6 of the 12 edges of the cube, making use of all three dimensions.

Returns
an unknot embedded in the edges of a cube.

◆ figureEight()

static Link regina::ExampleLink::figureEight ( )
static

Returns a four-crossing diagram of the figure eight knot.

Returns
the figure eight knot.

◆ gordian()

static Link regina::ExampleLink::gordian ( )
static

Returns Haken's Gordian unknot, a 141-crossing diagram of the unknot that is difficult to untangle.

Returns
the Gordian unknot.

◆ gpv()

static Link regina::ExampleLink::gpv ( )
static

Returns a four-crossing diagram of the Goussarov-Polyak-Viro virtual knot.

This is a knot whose group changes when we switch the upper and lower strands at each crossing (a behaviour that is impossible for classical knots and links).

Specifically: if we denote this knot K, then K.group() is isomorphic to the trefoil group; however, if we call K.changeAll() or K.rotate() then K.group() becomes isomorphic to the unknot group (i.e., the infinite cyclic group).

This is the rotation of virtual knot 4.73 in the Jeremy Green tables (where by "rotation" we mean flipping the diagram upside-down so that each crossing keeps its sign but switches its upper vs lower strands - in Green's terminology, this is the composition of both a vertical and a horizontal mirror image).

Returns
the Goussarov-Polyak-Viro virtual knot.

◆ gst()

static Link regina::ExampleLink::gst ( )
static

Returns a 48-crossing potential counterexample to the slice-ribbon conjecture, as described by Gompf, Scharlemann and Thompson.

Specifically, this knot is Figure 2 from their paper "Fibered knots and potential counterexamples to the property 2R and slice-ribbon conjectures", Geometry & Topology 14 (2010), 2305-2347.

Returns
the Gompf-Scharlemann-Thompson knot.

◆ hopf()

static Link regina::ExampleLink::hopf ( )
static

Returns a two-crossing diagram of the Hopf link.

This is the variant in which both crossings are positive.

Returns
the Hopf link.

◆ kinoshitaTerasaka()

static Link regina::ExampleLink::kinoshitaTerasaka ( )
static

Returns the 11-crossing Kinoshita-Terasaka knot.

This is the reflection of K11n42 in the Knot Atlas, and is a mutant of the Conway knot. It has trivial Alexander polynomial.

Returns
the kinoshita-Terasaka knot.

◆ kishino()

static Link regina::ExampleLink::kishino ( )
static

Returns a four-crossing diagram of the Kishino knot.

This is a non-trivial virtual knot that is the composition of two virtual unknots. It is a non-trivial virtual knot; however, it has the same group as the unknot, and it has trivial Jones polynomial.

This is virtual knot 4.55 in the Jeremy Green tables.

Returns
the Kishino knot.

◆ monster()

static Link regina::ExampleLink::monster ( )
static

Returns the monster unknot, a 10-crossing diagram of the unknot that is difficult to untangle.

Returns
the monster unknot.

◆ spatialBorromean()

static SpatialLink regina::ExampleLink::spatialBorromean ( )
static

Returns a simple and symmetric embedding in 3-space of the Borromean rings.

Returns
the Borromean rings.

◆ spatialHopf()

static SpatialLink regina::ExampleLink::spatialHopf ( )
static

Returns a simple embedding in 3-space of the Hopf link.

Returns
the Hopf link.

◆ spatialTrefoil()

static SpatialLink regina::ExampleLink::spatialTrefoil ( )
static

Returns a simple and symmetric embedding in 3-space of the right-hand trefoil.

Returns
the right-hand trefoil.

◆ torus()

static Link regina::ExampleLink::torus ( int p,
int q )
static

Returns the (p,q) torus link.

The parameters p and q must be non-negative, but they do not need to be coprime.

All of the crossings in the resulting link will be positive.

Parameters
pthe first parameter of the torus link; this must be strictly non-negative.
qthe second parameter of the torus link; this must also be strictly non-negative.
Returns
the (p, q) torus link.

◆ trefoil()

static Link regina::ExampleLink::trefoil ( )
static

Returns a three-crossing diagram of the right-hand trefoil.

This returns the same knot as trefoilRight().

Returns
the right-hand trefoil.

◆ trefoilLeft()

static Link regina::ExampleLink::trefoilLeft ( )
static

Returns a three-crossing diagram of the left-hand trefoil.

Returns
the left-hand trefoil.

◆ trefoilRight()

static Link regina::ExampleLink::trefoilRight ( )
static

Returns a three-crossing diagram of the right-hand trefoil.

This returns the same knot as trefoil().

Returns
the right-hand trefoil.

◆ unknot()

static Link regina::ExampleLink::unknot ( )
static

Returns a zero-crossing diagram of the unknot.

Returns
the unknot.

◆ virtualTrefoil()

static Link regina::ExampleLink::virtualTrefoil ( )
static

Returns a two-crossing diagram of the virtual trefoil.

Both crossings will be positive.

This is the mirror image of virtual knot 2.1 in the Jeremy Green tables (where by "mirror image" we mean switching the upper and lower strands in each crossing - Green calls this a vertical mirror image).

Returns
the virtual trefoil.

◆ whitehead()

static Link regina::ExampleLink::whitehead ( )
static

Returns a five-crossing diagram of the Whitehead link.

Returns
the Whitehead link.

The documentation for this class was generated from the following file: